
Electrical lab Autumn term Digital Logic Experiment

1

Digital Logic

Aims ...2
Equipment ..2
Environment...2
Transferring files from one lab partner to another..2
1.0 Boolean algebra...2
1.1 Boolean variables and expressions ...2
1.2 Boolean operators..2
1.3 Truth tables..3
1.4 Associative and distributive laws ...3
1.5 Basic logic identities ...3
2.0 Electronic gates ...4
2.1 CMOS logic...4
2.2 Redundancy of logical operators ..5
2.3 The NAND gate ..5
3.0 Basic Windows..5
4.0 Learning to use Quartus II ..6
5.0 Gate Notation ..9
5.1 Other Types of Gates...10
6.0 Combinatorial logic...10
6.1 Logic and arithmetic ...10
6.2 Expression abstraction ..11
6.3 Implementation of circuits in sum-of-product form...11
6.4 A full adder..12
6.5 A 4-bit ripple-through adder ...13
6.6 Using Bus lines in Quartus II..13
6.7 The Hierarchy Display ..14
7.0 The two's complement representation ..15
8.0 A simple arithmetic logic unit ..16
8.1 An improved ALU..16
9.0 Gating and multiplexing..16
9.1 Extending the range of a multiplexer..17
10.0 Extending the ALU..17
11.0 Sequential Logic..18
11.1 A testing system for the ALU ...18
11.2 Adding feedback and memory ..19
11.3 The D flip-flop ..19
Suggestions for further reading ...20

Electrical lab Autumn term Digital Logic Experiment

2

Aims
In this experiment, you will learn the basis of Boolean algebra and the rules for the manipulation of
logical expressions. You will use this algebra to solve problems of combinatorial and sequential logic
design. Your solutions will be implemented electronically as arrangements of gates based on CMOS
components. However, you will test all your solutions 'virtually', using a software simulation package
called Quartus II1.

Equipment

This is a software – only experiment: use a networked lab XP PC

Environment

You will be using a personal computer (PC) fitted with a pentium processor chip, internal hard disc,
keyboard and mouse. All the application software you need are stored locally on drive c: which is read-
only. All your personal files are stored on a network disk on level 10. You will be working entirely in
the Microsoft Windows XP environment. This will allow you to select and manipulate applications and
tools using graphical symbols (icons) instead of typing commands through the keyboard.

Transferring files from one lab partner to another

You will work in pairs on this experiment, and so at the end of each session, you should exchange any
files that you have made, so that both partners have a complete set of data. So long as you have
genuinely worked together, this does not constitute plagiarism. Because of the way that Windows XP is
set up, it is difficult to map drives between students, so the easiest way to transfer data is by floppy disc
or memory stick. Remember to retrieve any such device once you have used it, and not leave it in the
PC!

1.0 Boolean algebra
A symbolic algebra consists of a set of operators that act on a corresponding set of variables according
to predefined rules. The resulting expressions can then describe relationships between the variables.
While such algebras can take many forms, the version used to describe logical relations (known as
Boolean algebra, after its originator, George Boole, 1815-1864) has been overwhelmingly successful.
As originally conceived, Boolean algebra was intended simply to decide the truth or falsehood of
logical propositions (it is therefore sometimes known as propositional calculus). However, since it is
essentially a binary system, it can also be used as a basis for binary arithmetic. Furthermore, since
binary states may be conveniently described by the condition of two-way switches, it is a natural
candidate for electronic implementation. All digital computers (i.e. all practical electronic machines
that carry out both logical and arithmetic operations) are therefore based on Boolean algebra at their
most fundamental level of design.

1.1 Boolean variables and expressions
Boolean expressions are normally two-valued, being either true or false. For example, the proposition
'has wings' would be true for a glider; however, the proposition 'has engine' would be false. To simplify
the notation, propositions are described symbolically. The proposition 'has wings' might therefore be
described as 'proposition A', or more simply as the Boolean variable 'A', while 'has engine' might be
defined as the variable 'B'. The two possible states of each variable may then be written more simply as
'1' (standing for 'true') and '0' (for 'false').
Boolean expressions are constructed by combining variables with operators. In the above example, the
proposition 'has wings and an engine' is an expression, since it establishes a particular relationship
between the variables 'has wings' and 'has engine'. In this case, the link is provided by the word 'and',
which is itself a Boolean operator. Boolean expressions are also two-valued - 'has wings and an
engine' would be true for an airliner, but false for a glider.

1.2 Boolean operators
Conventionally, Boolean algebra is based on the use of three operators: AND, OR and NOT. The first
is used to establish a relationship of the form 'A and B', while the second is used to describe 'either A or

1 http://www.altera.com/products/software/products/quartus2/qts-index.html. Quartus II Web edition
can be downloaded free from this site.

Electrical lab Autumn term Digital Logic Experiment

3

B'. The last acts on a single variable to produce a complement or inverse. For example, if the variable
A describes the proposition 'has wings', NOT A represents 'does not have wings'. Furthermore, if A is
true, NOT A must be false. The notation used in this experiment to describe the use of these operators
is shown below:

Operator Symbol Example
AND • A • B
OR + A + B
NOT A

1.3 Truth tables
Simplification of a logical expression can be assisted by considering its truth table. This details the
value of the expression (the output) obtained for every combination of the variables in the expression
(the inputs). For example, Figure 3 shows the truth tables for AND, OR and NOT. Notice that since
there are two inputs in the left-hand table, each row of inputs can be considered as two-bit binary
number, ascending in order from 00 (decimal zero) at the top to 11 (three) at the bottom. This
arrangement ensures the inclusion of all possible combinations. Here, there are 22 rows; for N
variables, there will be 2N rows.

Inputs Outputs Input Output
A B A B• A+B A A
0
0
1
1

0
1
0
1

0
0
0
1

0
1
1
1

 0
1

1
0

Exercise 1. Gliders (X) and airliners (Y) may have as component parts wings (A) and engines (B).
Construct logical expressions for X and Y in terms of A and B, and draw up appropriate truth tables for
each.

1.4 Associative and distributive laws
Boolean expressions obey some standard laws of linear algebra. In particular, the associative and
distributive laws can be used to group and ungroup expressions during simplification. Examples of
their use are given below.
Associative law: A • B • C = (A • B) • C = A • (B • C)
Distributive law: A • (B + C) = (A • B) + (A • C)

1.5 Basic logic identities
A number of other rules exist which are useful in simplifying expressions. These are summarised
below.
i) A • A = 0 A + A = 1
ii) A • 1 = A A • 0 = 0 A • A = A
iii) A + 1 = 1 A + 0 = A A + A = A
iv) (A B)+ = A •B (A B)• = A + B
Equations iv) (known as de Morgan's theorem) suggest that a logical function may be replaced by an
alternative (the inverse function) by a simple procedure: a) complementing all the variables in the
function, b) replacing all ANDs by ORs, and vice versa, and c) complementing the result. This
procedure can be extended to functions of any number of variables.

Exercise 2. Verify Equations iv) above using truth tables. Derive one from the other.

Exercise 3. Simplify the following boolean expression as much as possible:

))(()())(()(ZYWXVZYWXV +••+++••+

Electrical lab Autumn term Digital Logic Experiment

4

2.0 Electronic gates
Logical expressions may be evaluated electronically using circuits called gates. Figure 1 shows an
example. The input is a voltage, which can take two possible states, “High” (= Vcc), or “Low” (= 0v).
We are interested in the output voltage. In Figure 4a & 4b, two switches link a voltage supply rail VCC
with a zero volt rail. Assume that the switches are electrically – activated (like relays, or transistors).
Each switch is controlled by the same input; however, they are of different types. The upper one is
arranged to be open when the input voltage is high, and closed when it is low. The lower one has the
opposite property; it is closed when the input is high, and open when it is low. As a result, the switches
can never be open together. When the input is high, the lower switch ties the output to zero, forcing it
low. On the other hand, when the input is low, the output is tied to VCC, forcing it high. Assuming that
low and high voltages correspond to logic states 0 and 1, the output is the complement of the input and
the circuit is an inverter. Figure 1c shows how this could be implemented using CMOS transistors.

 VCC

Low High

 0V
 b)

 VCC

 A A

 0V
 c)

 VCC

High Low

 0V
 a)

Figure 1. a) and b) switch connections implementing an inversion; c) CMOS inverter

2.1 CMOS logic
The operation of a CMOS (complementary metal oxide semiconductor) FET is shown in Figure 2a.
Current flows between two contact electrodes, the source and the drain, via a pathway known as a
channel. Above the channel is a further electrode, the gate. Using some clever semiconductor
engineering, a field applied across an insulating layer between the gate and the substrate can be made
to control the resistivity of the channel. As a result, the source-drain current may be passed or blocked
at will, so the device acts as a switch. Figure 2b shows a simple CMOS process. Here (by a further
clever trick, this time one of fabrication) the use of polysilicon allows the gate to be exactly aligned
over the channel, without the need for alignment tolerances. The channel length can therefore be
minimised, thus maximising the device speed.

Source Gate Drain

channel

(a) (b)

polysilicon Al metalisation

 silicon dioxide
n+ n+

 n-channel

t b t t

Figure 2. a) Schematic of a field effect transistor, and b) realisation of n-channel FET in CMOS

technology

Different CMOS transistor variants exist. N-channel FETs operate via the flow of electrons (n-type
carriers), while p-channel FETs use holes (p-type carriers). Conveniently, unblocking the channel
requires a different control voltage in each case. With further adjustment, the n-channel transistor can
be made to turn on if a high voltage (logic 1) is applied to its gate, and off if a low voltage (logic 0) is
applied. The p-channel transistor is exactly the reverse; it is off if a logic 1 is applied, and on if a logic
zero is applied. Figure 3 shows the symbols used for the different types. Figure 1c shows how the
inverter circuit previously described can be built up using two CMOS transistors. Make sure that you
understand the way it operates. Would it still work if the transistors were exchanged?

Electrical lab Autumn term Digital Logic Experiment

5

n-channel p-channel

'0'

'1'

'0'

'1'

Gate
Source

Drain

Figure 3. Symbols for n- and p-channel CMOS transistors

2.2 Redundancy of logical operators
From de Morgan's theorem, it can be seen that of the three basic logical operators, either the OR or the

AND operator is unnecessary. For example, since A B A B+ = •() , all occurrences of OR can be

replaced by combinations of AND and NOT. Similarly, since A B A B• = +() , AND can be replaced
by combinations of OR and NOT. The first such combination - AND and NOT - is used so often that it
is given a special name, NAND. Similarly, the second combination - OR and NOT - is referred to as
NOR. The truth tables for these new operators are

A B ()A B• ()A B+
0 0 1 1
0 1 1 0
1 0 1 0
1 1 0 0

This process of eliminating redundant operators may be continued. For example, since ()A A• = A , a

NOT operation may be performed using a NAND. Finally, since ()A B A B• = • , an AND operation
can be realised using NAND and NOT operators, and hence by a combination of NANDs.

2.3 The NAND gate
While the procedures above appear tortuous, they allow a very powerful conclusion to be reached: any
logical expression may be realised using NANDs alone, so the NAND operator is functionally
complete. The importance of this result becomes clear when we consider the electronic realisation of
logical operators: it reduces the number of circuit types required to just one, the NAND gate! This is
shown in Figure 4; check that you understand its operation.

A

B

X

0V

V+

Figure 4. CMOS NAND gate

Exercise 4. Figure 4 shows a CMOS NAND gate. Design a similar NOR gate using CMOS
transistors as switches.

3.0 Basic Windows
• Log onto the XP system
You need to make a folder on your h: drive, to store your work.

Electrical lab Autumn term Digital Logic Experiment

6

• LH mouse click on My Computer

• Select drive h: by clicking on the drive ICON
• Use the RH mouse button to access the pull-down menu. Move down to NEW, then across to

FOLDER. Name your new folder quartus2lab.
• Close the windows by LH mouse clicking on the at the top of each window.

4.0 Learning to use Quartus II
In this part of the experiment, you will create a simple NAND gate schematic and simulate it under the
Quartus II environment. To launch the program:

1. Start Quartus II (Select Start>Programs>Altera>Quartus II). LH mouse click on Start
, and slide up to Programs , across and up to Altera, and across to Quartus II. When

you release the mouse button, the program will start.2

2. Start a new project (Select File>New Project Wizard)

3. Select your working directory, choose the folder quartus2lab which you created before and
create a folder called nand2sim. Note that you may create all projects under quartus2lab
however it is recommended that you create a new folder for each exercise. You should now see
the following dialogue box:

4. Click Finish3. If you have not create the directory nand2sim, click yes when the program ask if
you want to create the directory. You should now see the following in your Project Navigator
window:

5. Next, open a new schematic sheet with the menu command: File>New or click on and select
Block Diagram/Schematic File.

6. Saving your Schematic - Save this Schematic File with the menu command: File>Save As,
the file name should be the same as your project name (nand2sim) and click save.

2 It will save time if you make a new shortcut on your desktop. Use the RH (right-hand) mouse button.
3 The next few steps specify other details of the project including the target device, as you are only
simulating your design these steps are not necessary.

Electrical lab Autumn term Digital Logic Experiment

7

Library Components

• Obtain a NAND gate from the component library by double-clicking the Left Mouse Button
(LMB) on the blank part of the sheet. For this experiment you will be using components from the
primitive library (prim), the macrofunction library (mf), and components from your design’s
home directory.

• You will find the primary library in the path c:\altera\quartus50\libraries\primitives. Expand the
list and locate the folder logic.

• Pick up a 2-input NAND gate from the logic folder (nand2). Place it on the schematic.
• Pick up and place both an input port symbol (input) and an output port symbol (output) from the

primitive library under pin. In order to simulate any design, all input and output pins must be
connected to the port symbols.

• Note that a input port symbol consists of a number of elements as shown below:

Pin name - to be
overwritten

Name of library
component

Default logic
level if left

unconnected
• Make a duplicate copy of the input port symbol using menu command: Edit > Copy, and then

Edit > Paste. (A shortcut is to hold the Ctrl-key down and click the LMB on the symbol and
drag a copy elsewhere on the sheet.)

Wiring-up a Circuit

• Next we must wire up the various symbols. Move the cursor to a terminal of the NAND gate,
press, and keep pressing, the LMB and drag the mouse to the destination terminal. You should
see a right-angle connection being drawn on the schematic.You may also label any wire by
selecting the connection with LMB (it turns BLUE), and simply type the name of the wire.

• Wire-up your circuit according to figure 6.

Figure 6 A Simple NAND gate circuit

Changing pin names of input/output port symbols

• Next label all the input and output ports correctly. This can be done by a RMB click on the pin

and then select Properties. Replace the original pin_name with the new name (such as A) on the
keyboard and click OK.

Compiling your Design (button:)

• Either use the pull-down menu: Processing>Start Compilation..., or click on the above button,
make sure that the schematic diagram does not contain obvious errors. Compilation will synthesis
your design and creates all the necessary files for simulation.

• Note that during compilation, two files (.sof and .pof) will be created for loading the design to the
targeted hardware. However these files are not needed for simulation and can be deleted to save
space on your hard disk.

Creating Signals to Test the Design

• Use the menu command: File>New, and select Vector Waveform File under Other Files tab.
• Specify the input and output nodes from your design using the menu command: Edit>Insert

Node or Bus.
• Click the Node Finder button on the dialogue box. Choose Pins: all under Filter and click the

list button. You should see the following dialogue box:

Electrical lab Autumn term Digital Logic Experiment

8

Fig 7 Node Finder dialogue box

• Select the nodes A, B and X and click the button, followed by the button.
• You should see these three signals are now included in the Waveform display. Next, we must

define the timing resolution with the menu command: Edit>Grid Size... Enter a grid size of
100ns.

• Next, specify how long you want to simulate for. Use the menu command: Edit>End Time, and
enter 1us. Hold Ctrl and click W to zoom so that it show the full 1us long timeline in 100ns step.

• You are now ready to create waveforms for inputs A and B. To do this, first select the signal A by
clicking on the pin symbol . Then use the menu command: Edit>Value>Count Value...
You should see a dialogue box as shown here:

Fig 8 Count value dialogue box

• With the value entered as shown, the signal A will toggle between 0 and 1 at a duration of 100ns.
• Do the same for signal B, but enter a value of 2 in the Multiplied By box.
• Save this waveform signal file (nand2sim.vwf). You should see a waveform file similar to the

following:

Fig 9 the waveform editor

Electrical lab Autumn term Digital Logic Experiment

9

Remember to save your work, and simulate the circuit, Using the Simulator (button:)
• Invoke the menu command: Tools>Simulator Tool. A dialogue box will appear. Click on the

 button and select nand2sim.vwf as the input file. Followed by clicking the Overwrite

simulation input file with simulation results check box and click the button. Open
the file by clicking the button and verify that the output signal X is as expected.

5.0 Gate Notation
The most common gates are NOT, AND, OR, NAND and NOR; however others (e.g. XOR, standing
for exclusive OR) also exist and may occasionally be encountered. There are two standard symbol sets
for representing gates. Figure 10 shows the old US Military Standard. This will be used here for
compatibility with Quartus II; however, you should be aware that it has been superseded by the more
modern ANSI/IEEE Standard.

a) A
 B

A B•

b) A
 B

A B+

d) A
 B

A B•

c) A A

e) A
 B

A B+

f) A
 B

()A B A B+ = •

i) A
 B

A B A B+ = •()

h) A A

g) A
 B

()A B A B• = +

j) A
 B

A B A B• = +()

Figure 10 a) - e) Logical symbols for AND, OR, NOT, NAND and NOR gates; f) - j) mixed logic

representations

In the Military standard, functions are represented using symbols of different shapes. For example,
Figures 10a) and 10b) show AND and OR gates. Inversion of the output is indicated by a circle, so that
NOT, NAND and NOR gates are drawn as shown in Figures 10c) - 10e). It is also possible to use an
alternative scheme known as mixed logic representation, in which the inputs are inverted in addition
to the outputs. Figures 10f) - 10j) show mixed logic equivalents for the gates in Figs 10a) - 10e).

Electrical lab Autumn term Digital Logic Experiment

10

Exercise 5. Figures 11a) and b) use NAND gates to implement logic functions. Determine the
function in each case. Using similar principles (i.e., using only NAND gates), design an OR gate.

A X A
B Xa) b)

Figure 11 Different logic functions based on NAND gates

5.1 Other Types of Gates
Most logic families contain a large variety of gates. Quartus II system offers a full and comprehensive
library of such gating functions either in the primitive function library or the macrofunction library.
You can explore this using the help menu: HELP>Macrofunctions/LPM. You should see a help
screen similar to the ones shown in figure 12. Click on any of these to get a description of what it does.

Figure 12 Help Pages for Macrofunctions/LPM

6.0 Combinatorial logic
In many logic problems, the outputs are simple functions of the inputs. Thus, a pair of outputs X and Y
may be related to inputs A, and B by functions f1 and f2, such that X = f1 (A, B) and Y = f2 (A, B).
Problems of this type are referred to as combinatorial problems, and part of this experiment is
concerned with their solution and implementation using gates. Later on, you will encounter problems in
which the outputs are also functions of their own previous values, through a form of feedback; such
problems are referred to as sequential.

Combinatorial problems are generally tackled in a systematic way. Firstly, a truth table is drawn up for
the problem. Secondly, logical expressions for the outputs are extracted from the truth table as a sum of
canonical products. Various procedures are then used to simplify the sum-of-product expression (you
will encounter some of these in the 1st-year digital electronics course). Finally, the circuit is
constructed according using a standard technique. We shall consider each of these steps in turn, using
the example of a circuit for binary addition.

6.1 Logic and arithmetic
Consider the addition of two 1-bit binary variables A and B. The result of the addition is clearly
decimal zero (binary 00 in 2-bit notation) when A and B are both zero, decimal 1 (binary 01) when A
or B (but not both) are 1, and decimal 2 (binary 10) when A and B are both 1. These results are shown
as a lookup table in Figure 13.

Electrical lab Autumn term Digital Logic Experiment

11

 A B Carry Sum

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Figure 13 Lookup table for 1-bit arithmetic

The close resemblance of Figure 13 to a truth table suggests that arithmetic may be performed
electronically by using gates to generate solutions from a binary lookup table, instead of executing a
more conventional decimal algorithm.

6.2 Expression abstraction
Given a truth table, expressions describing relationships between inputs and outputs may be abstracted
very simply.

For example, the fourth line in Figure 13 suggests that Carry = A • B, since Carry is only 1 when A and
B are both 1. Expressions of this type are known as products, since they have the appearance of a

simple arithmetic product. Two combinations can be found that give 1 for Sum, either A B• or

A B• . Thus, the expression for Sum is a sum of products, written as Sum = • + •() ()A B A B

Sum-of-product expressions are also known as canonical expressions when every variable appears in
every term.

Each product in a canonical expression is known as a minterm. Each minterm can be considered as a
number for the purposes of identification. The numbers are obtained by considering the variables as
binary 1's and their complements as 0's. Thus, the first minterm in Sum would be identified by the
decimal number 1 (binary 01) and the second by decimal 2 (binary 10).

6.3 Implementation of circuits in sum-of-product form
Three stages are required in the construction of a sum-of-product expression. In the first, some or all of
the inputs are inverted. In the second, different combinations of the inputs (and/or their complements)
are ANDed together to give the individual product terms. Finally, the terms are ORed together to give
the sum.

These three stages can still be implemented in a circuit constructed from NAND gates alone. Single
NAND gates can obviously replace the inverters required in the first stage. NANDs can also replace the
ANDs in the second stage, provided we take note of the additional inversion involved. As it turns out,
De Morgan's theorem suggests that a single NAND can then implement the final OR operation in a
particularly elegant way.

De Morgan's theorem was previously given as ()A B A B• = + . However, the alternative

()A B A B• = + is equally valid. This implies that the final OR can be performed as a NAND, if the
terms involved have previously been inverted. As just described, this inversion occurs automatically
when NANDs are used in the second stage. Therefore, in the all-NAND approach, all that is required is
to replace all the second- and third-stage AND and OR gates by NANDs.

To illustrate this principle, consider the expression for Sum found above. Using De Morgan's theorem,

this can be written as Sum = • • •() ())A B A B . To generate this expression, five NANDs are

required: two first-stage NANDs to provide the complements A and B , two second-stage NANDs to

generate the products ()A B• and ()A B• , and a third-stage NAND to provide the sum

() ())A B A B• • • . Figure 14 shows the circuit.

Electrical lab Autumn term Digital Logic Experiment

12

A

B

A

B

()A B•

(() ())

() ()

A B A B

A B A B
Sum

• • •

= • + •
=

()A B•

Column 1
(Complements)

Column 2
(Products)

Column 3
(Sums)

Figure 14 Sum-of-product circuit for the Sum output

Exercise 6. Design a circuit to generate the Carry output for 1-bit arithmetic. Using Quartus II
construct a combined Sum and Carry circuit from nand gates only, and save it under a new project
name halfadd (H:\quartus2lab\halfadd). Verify its operation using the simulator. Make sure that you
create a default symbol for this using the menu command: File>Create/Update>Create Symbol files
for Current File. This will make a symbol similar to that shown in figure 15 a) automatically.

A Carry

B Sum

 A Cout
 B

 Cin Sum

a) b)

Figure 15 a) half_adder and b) full_adder components

NOTE: You should create a new folder/directory for each project (design) as this will greatly help the
structuring of your work especially when your design becomes large.

6.4 A full adder
One-bit addition circuits can be modified to add together two binary digits A and B, together with the
carry from a previous addition. The resulting full adder can then be used as the building block of a
more complicated circuit that can add together two N-bit numbers (and hence perform useful
arithmetic). Figure 16 shows the truth table for a full adder. Check that you understand the way that it
is constructed.

A B Carry_in Carry_out Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Figure 16 Full adder truth table

Exercise 7. Using Figure 16, construct sum-of-product expressions for Carry_out and Sum.
Design a circuit to generate Carry_out and Sum using two half adders and an OR gate. Using your
component halfadd and an OR gate, construct the circuit and save it under the project name fulladd.
Verify that it generates the truth table of Figure 16 using the simulator. Create a default symbol for this
and you should have a default symbol similar to that shown in Figure 15(b).

Electrical lab Autumn term Digital Logic Experiment

13

Adding symbol to your design
• Assuming you have created a project in different folder for each exercise, you will need to add

the .bdf Block Diagram file to your design. Use the menu command: Assignments>Settings and
choose Files under Category, locate and add the .bdf file to your project. You should see a
dialogue box similar to the one shown below.

• To add this symbol to the schematic file, double click on the blank part of the sheet and click on

the button. Locate your symbol (e.g. H:\quartus2lab\halfadd\halfadd.bsf) and click OK.

6.5 A 4-bit ripple-through adder
Two multi-bit binary numbers (or words) can be summed by using full adders to emulate the process
of manual addition. Figure 17 shows a circuit that can add together two 4-bit numbers A = A3 .. A0 and
B = B3 .. B0. Four full adders are used, in a chain. The Nth stage adds together the corresponding bits
AN and BN from each word (together with any carry from the N-1st stage) and produces the Nth bit in
the sum. There is no need for a carry into the 0th stage, but there may be a carry out of the 3rd stage if
the sum exceeds 1111. Note that the Nth stage addition will only generate the correct sum when the
carry from the N-1st stage is ready. This is a serial adder, also known as a ripple-through adder, as
the final value of the sum will keep changing while the carrys propagate through the chain from the
right.

C in = 0

C out

A B C in

C out S

A B C in

C out S

A B C in

C out S

A B C in

C out S

A0
 B0

A1
 B1

A2
 B2

A3
 B3

S3 S2 S1 S0
Figure 17 4-bit ripple-through adder circuit

6.6 Using Bus lines in Quartus II
As you can see from Figure 17, the inputs A & B and output S of the 4-bit adder may be simplified if,
instead of dealing with sets of four independent bit lines, we deal with two 4-bit input bus lines and
one 4-bit output bus line (we also have, of course, a bit input line for Cin and a bit output line for
Cout). Quartus II lets you define such buses and this makes subsequent interfacing of components
considerably easier as you only have to connect the bus lines and not each and every bit line that makes
them up. Figure 18 shows detail from the inputs to a possible 4bitadd design which makes use of bus
lines.

Electrical lab Autumn term Digital Logic Experiment

14

These individual input
lines interface with the rest
of the design (not shown).

4-bit Input bus
for B

Single input line
for carry in

This thick line tells
Quartus II that this is a
bus line

 Figure 18 Input bus lines to 4bitadd

As you can see, there are two main stages to making a bus line in Quartus II. Firstly the inputs, for
example for A, must be labelled in a sequential method starting at 0, i.e. A0,A1,A2,A3 if A is 4-bit.
Secondly, input or output bus lines must be made and labelled. You will note that these inputs/outputs
use the same input symbol as a single line input/output. The labelling, however, must indicate a bus.
For example, if A is a 4-bit bus then the inout line for A is labelled A[3..0] (i.e. A ranges from low bit 0
to high bit 3). A bus line must also be attached to the input/output. This is a thick line connection, and
is obtained as shown in Figure 19 below.

Select this thick
bus line

Figure 19 Creating a bus connection

Exercise 8. Using your fulladd component and bus lines, construct a 4-bit ripple-through adder
circuit, and save it under the name 4bitadd. Verify that it generates the correct answer to the additions
0111 + 0001, 1101 + 0010 and 1111 + 0001. Once again, remember to create a default symbol.

6.7 The Hierarchy Display
The last design you have constructed is complex enough to introduce the powerful hierarchy utility of
Quartus II. The hierarchy display utility is located at the Project Navigator window similar to that
shown in Figure 20.

Electrical lab Autumn term Digital Logic Experiment

15

Figure 20 The Hierarchy display

You can clearly see the dependency of 4bitadd on four fulladd circuits, each of which is dependent
upon two half adders. With the LMB double click (select) one of the fulladd components. You will
invoke another window which shows the fulladd circuit. You can also click on the Files tab to view all
the files used in your design.

7.0 The two's complement representation
A four-bit number can be used to represent the positive integers from 0000 = 0 to 1111 = 15. This is
known as unsigned binary notation. The weighting of each bit is as in table (a) below.

 bit weight bit weight
 b0

b1
b2
b3

20
21
22
23

 b0
b1
b2
b3

20
21
22
-23

 Unsigned number 2’s complement number
 (a) (b)

However, in most calculations, negative numbers will be required. A different convention known as the
two's complement provides a way to represent negative numbers. Here the weighting of the most
significant bit (MSB) is negative instead of positive, as shown in table (b) above. In this scheme,
numbers in the range 0000 to 0111 (0 to 7) are chosen to be positive. These represent the numbers 0 to
+7 (in that order). Numbers in the range 1000 to 1111 (8 to 15) are taken to be negative, and represent -
8 to -1 (again, in that order). The name two's complement arises because the negative of a number can
be found by changing all the 1's in its binary description to 0's (and vice versa) and adding 1 to the
result.

Exercise 9. Write down the binary equivalent of -3 and -5. Perform the additions 1 + (-1) and 3 + (-
7) in binary.

Exercise 10. Since A - B = A + (-B), A minus B can be evaluated by adding A to minus B, where
minus B is specified according to the two's complement scheme. Design a circuit to perform 4-bit
subtraction, based on your 4bitadd component. (N.B. There is no need to enter this design into
Quartus II).

Electrical lab Autumn term Digital Logic Experiment

16

8.0 A simple arithmetic logic unit
The computational heart of a microprocessor is an arithmetic logic unit (or ALU). As its name
suggests, this circuit can perform a variety of arithmetic and logical operations. Some operations (e.g.
addition) act on two binary inputs A and B to generate a binary result; others (e.g. incrementing or
decrementing) act on a single input. In general, an ALU therefore has two binary inputs and one binary
output to handle data. It also has a binary control input to select the operation required. You can
construct a simple ALU from your component 4bitadd by adding a single control line to make it add
and subtract as required.

Exercise 11. Your solution to Exercise 10 (designing a 4-bit subtractor) should have involved
inverting the B inputs to the 4-bit adder, and altering the value of Cin. Design and construct a circuit
that uses XOR gates to implement these changes under the control of a signal called add_sub. Save the
circuit under the name addsub. Save, check and compile the design and test its operation. Remember
to add the required files before compiling the project and create a default symbol for it as shown in
Figure 21.

Figure 21 Example symbol - addsub component

8.1 An improved ALU
Additional functions can be added to extend the capabilities of the ALU. At the moment it can perform
the operations ADD (S = A + B) and SUB (S = A - B). Two further functions INC (S = A + 1) and
DEC (S = A - 1) are often needed by microprocessors to act as loop counters. In order to add additional
circuitry to your addsub component, to allow the B input to be switched between a B data word and
the binary number 0001 under the control of a further select line, we need to understand the operation
of and make use of multiplexers.

9.0 Gating and multiplexing
In addition to performing logical and arithmetic operations, logic gates can also be used to control and
select signals. For example, Figure 22(a) shows an AND gate being used to enable or disable an output.
A glance at the AND truth table (Figure 3) should convince you that when Enable = 1, Out = In;
similarly, when Enable = 0, Out = 0 (independent of the value of In). As a result, Enable can be said to
control or gate the value of In that is fed to Out.

In
 Out

Enable
 a)

In 1

 Out
In 2

Select

 b)

Figure 22 a) Signal gate; b) 2 × 1 multiplexer

When combined with additional logic, control gates can be used to select which of a number of inputs
is fed to an output. For example, Figure 22(b) shows a 2 × 1 multiplexer. Here two inputs In0 and In1
are gated by signals Select and Select , respectively. The gated outputs are combined by an OR gate
into the final output Out. When Select = 0, Out = In0, and when Select = 1, Out = In1. Note that an OR
gate suffices as the final combiner, even though it can generate a high output when both of its inputs

Electrical lab Autumn term Digital Logic Experiment

17

are high. No confusion arises, because the select lines for In_0 and In_1 are inverses; as a result, only
one input to the OR gate can be high at any one time.

9.1 Extending the range of a multiplexer
More complex devices can be constructed by combining multiplexers. For example, Figure 23 shows a
4 × 1 multiplexer constructed from three 2 × 1 multiplexers. There are four data inputs I3 .. I0 and two
select inputs S1 and S0. When considered together, the select lines act as a binary code identifying the
data selected. For example, decimal 3 = binary 11; in the circuit, I3 is passed to the output when S1 = 1
and S0 = 1. Similarly, I2 is passed to the output when S1 = 1 and S0 = 0, and so on. S1 therefore acts as
the high bit in the select code, and S0 as the low bit.

I1
I0
S O

I1
I0
S O

I1
I0
S O

I3
I2

I1
I0
S0
S1

Figure 23 4x1 multiplexer

Exercise 12. Design an 8 x 1 multiplexer based on the 4×1 and the 2×1 multiplexer symbols shown
in Figure 24 (a) and (b). (N.B. There is no need to enter this design into Quartus II).

I1
I0
S O

I3
I2
I1
I0
S1
S0 O

a) b)

Figure 24 a) 2×1 and b) 4×1 symbols

10.0 Extending the ALU
Exercise 13. Figure 25 shows the truth table for the instructions ADD, SUB, INC and DEC in terms
of the control lines Set_B=1 and Subtract. Each of these control lines may be regarded as a bit in an
instruction code with bit elements Instruction0 and Instruction1.

Instruction 0
Set_B=1

Instruction 1
Subtract

Operation

0 0 Add
0 1 SUB
1 0 INC
1 1 DEC

Figure 25 Truth table for the ALU instruction set, in terms of control lines and instructions

Your design for addsub already performs addition and subtraction. The INC and DEC instructions
may be simply performed by setting B = 1 and then performing an addition or subtraction. Verify the
truth table shown in Figure 25 and design and construct the 4-operation ALU (use a multiplexer from
the others>maxplus2, for example, the 74157 which you will find in the mf library, or make your
own!). Using the simulator, test its operation. By now the circuit is getting quite complex, and you may
need to extend the simulation time – with the waveform editor open, use Edit>End Time.

Electrical lab Autumn term Digital Logic Experiment

18

Exercise 14. Modify the ALU and its instruction decoder to allow an additional instruction ASL,
which shifts every bit in the A input to the left by one and places the result in S.

11.0 Sequential Logic
Up till now you have been involved in the design, construction and simulation of combinatorial, non-
sequential logic circuits i.e. the outputs at any instant in time are entirely dependent upon the inputs
present at that time. A sequential circuit is one in which the current outputs are also dependent upon
previous inputs and/or outputs. There are two main types of sequential circuit, and their classification
depends upon the timing of their signals. For a synchronous circuit, the behaviour may be evaluated
from a knowledge of its signals at discrete instants in time (related to a clock signal). The behaviour of
an asynchronous circuit, however, depends upon the order in which its input signals change and these
may not be directly related to a clock signal. In the following exercises we will look only at the first
type of sequential circuit, whose operation is governed by means of a clock signal. For this reason this
type of circuit is often referred to as a clocked sequential circuit. A typical sequential logic circuit is
shown in Figure 26.

Combinatorial

Circuit

 Memory
 Element

feedback

Inputs Outputs

Figure 26 Block diagram of typical sequential circuit

11.1 A testing system for the ALU
When you were testing the operation of your ALU, you spent some time setting up the input
waveforms so as to test its operation. We will now use a simple counter and clock circuit to generate
the relevant numbers. This forms a test circuit for the ALU, to which it may be added. A counter is a
simple device to understand in operation. It has (in the basic form) a single input and a single output
bus, as shown in Figure 27.

 counter
clk

output bus

Figure 27 A counter

Upon the arrival of each clock pulse to the counter, the output bus line increments its value by one. The
output for a two-bit counter hence follows the sequence {00, 01,10,11,00,.......}.

Exercise 15. Select the macrofunctions option from help, and then the Counters option. In order
to test all the combinations of two 4-bit numbers as input to our ALU, we will need an 8-bit counter.
Create a new bdf file and get the component 8 count from the macrofunction library
(megafunctions>arithmetic>lpm_counter). When you click ok a MegaWizard Manager will pop up,
choose VHDL for output file type and a directory for the output file (e.g. H:\quartus2lab\test\count8).
You should now see a dialogue box similar to the one shown in Figure 28.

Electrical lab Autumn term Digital Logic Experiment

19

Figure 28 MegaWizard counter dialogue box

Configure the counter settings as shown in Figure 28 and click the Finish button. Add this counter
symbol to your design.

Figure 29 8-bit counter

You will note that the outputs X and Y correspond to the low and high words (4-bits) of the full 8-bit
output from the counter. This means that for every value of Y (0000 to 1111), X will count from 0000
to 1111. This is precisely what we desire as our test outputs. Save the above design as test and then use
it to construct, along with your alu design, a circuit called alutest which tests all combinations of 4-bit
addition, subtraction, INC and DEC. Save and compile this design and make sure that the simulated
results are what you would expect.

11.2 Adding feedback and memory
If we look at the diagram in Figure 30, we see that the sequential logic part of the ALU test circuit is
hidden within the workings of the 8-bit counter, and that the rest of the circuit is combinatorial. We
will now look at a simple circuit which follows the design of Figure 26. We need, however, to
introduce a simple ‘memory’ element.

11.3 The D flip-flop
The memory elements of clocked sequential circuits are called flip-flops. These circuit elements are binary
cells capable of storing 1 bit of information which they can maintain indefinitely (so long as power is
supplied). Binary information can enter and exit a flip-flop in a variety of ways, which gives rise to several
different types. In this experiment we will make use of a flip-flop type known as a D flip-flop. The D flip-
flop is so called because of its ability to hold data and is sometimes referred to as a gated D latch. It is
represented symbolically as shown in Figure 30(a) and may be constructed from 5 NAND gates as shown
in Figure 30(b). N.B. There is no need to create a flip-flop from NAND gates though.

 D

 Q

CP

 _
 Q

 b)

D Q

 _
CP Q

a)
Figure 30 D flip-flop (a) symbol, (b) NAND level circuit

Electrical lab Autumn term Digital Logic Experiment

20

Figure 30 shows the characteristic table for the D flip-flop :

 Q(t) D Q(t+1)

 0 0 0
 0 1 1
 1 0 0
 1 1 1

Figure 31 Characteristic table for the D flip-flop

As you can see, the output at the next clock pulse Q(t+1) is equal to the current data input D and is
independent of Q(t), the current output. This device, therefore, operates as a one-cycle delay.

Exercise 16. Describe a relationship between the current output S(t), the previous output S(t-1) and
the input A(t) for the circuit shown below in Figure 32 (assume that all numbers are < binary 1111 so that
carry bits may be ignored).

CLK

4-bit
counter

 ALU

A(t)

S(t)

 D
 Q
CP

 A

 B

 S

 I

GND

Figure 32 Clocked sequential circuit using the ALU

If A starts at binary 0000, what are the outputs for A = 0000 through to 0101? Using the help command of
Quartus II, select Registers Declaration, general description. Quartus II has in the others>maxplus2
library a 4-bit D flip-flop, the 74175. You may now begin entering a new design and select this register
from others>maxplus2 library, find out what signal you need to apply to the CLRN input. Together with
your circuit alutest, create the circuit shown in Figure 32. Save the design and compile it. Using the
simulator, test its behaviour. Check that it gives the correct outputs for A = binary 0000 to 0101. What
happens after this?

Exercise 17. (optional)

Some of you may have noticed that this circuit outputs the sequence of triangular numbers, so called

because they stack into triangles, i.e. 6 may be represented as There is a simple relationship between
the triangular numbers and the sequence of square numbers 0,1,4,9,16 etc. What is this relationship? Using
your last circuit and another ALU circuit, design a circuit whose output is the sequence of squares (for a 4-
bit system overflow will, of course, occur early in the sequence though).

Suggestions for further reading
• “Digital Systems – Principles and Applications”, 9th Ed, R. J. Tocci and N. S. Widmer,

Prentice Hall, ISBN: 0131219316, 2004 (£45)
• “Digital Fundamentals ”, T.L. Floyd, Prentice Hall, ISBN: 0-13-197255-3, June 2005 (£43)
• Digital Electronics I Course webpage:

http://www.ee.ic.ac.uk/pcheung/teaching/ee1_digital/index.html

VCFL/SJR/PYKC 2006.

